In order to improve the yaw stability of a front-wheel dual-motor-driven driverless vehicle, a yaw stability control strategy is proposed for a front-wheel dual-motor-driven formula student driverless racing car. A hierarchical control structure is adopted to design the upper torque distributor based on the integral sliding mode theory, which establishes a linear two-degree-of-freedom model of the racing car to calculate the expected yaw angular velocity and the expected side slip angle and calculates the additional yaw moments of the two front wheels. The lower layer is the torque distributor, which optimally distributes the additional moments to the motors of the two front wheels based on torque optimization objectives and torque distribution rules. Two typical test conditions were selected to carry out simulation experiments. The results show that the driverless formula racing car can track the expected yaw angular velocity and the expected side slip angle better after adding the yaw stability controller designed in this paper, effectively improving driving stability.