Power converters are generally utilized to convert the power from the wind sources to match the load demand and grid requirement to improve the dynamic and steady-state characteristics of wind generation systems and to integrate the energy storage system to solve the challenge of the discontinuous character of the renewable energy. In the low-voltage wind energy systems, interleaved boost converters (IBC) are often used to operate high currents in the system. IBCs are extremely sensitive to the constantly changing loading conditions. These situations require a robust control operation which can ensure a sufficient performance of the IBC over a large-scale changing load. Neural networks (NN) have emerged over the years and have found applications in many engineering fields, including control. In this paper, the adaptive control of interleaved boost converter with power factor correction (PFC) is investigated for gridconnected synchronous generator of wind energy system. For this purpose, a model reference adaptive control (MRAC) based on NN is proposed. Analysis results show that the proposed control strategy for the IBCs achieves near unity power factor (PF) and low total harmonic distortion (THD) in a wide operating range.