Search citation statements
Paper Sections
Citation Types
Year Published
Publication Types
Relationship
Authors
Journals
Efficient reservoir sweep is critical for operators to boost oil production in the Middle East. This task becomes particularly challenging in carbonate formations, which typically feature permeability ranging from microscopic pores to large cavernous vugs. Extreme heterogeneity disserves water injectors, leading to nonuniform injection profiles. Consequently, water sweeping is inefficient and leaves significant residual oil behind. In the Mesopotamian Basin, the matrix stimulation approach was rethought to address high permeability contrasts and produce the bypassed oil. The methodology relied on coiled tubing (CT) equipped with fiber optics and real-time downhole measurements, a CT-deployed inflatable packer, and a high-pressure rotary jetting tool. The array of downhole readings was leveraged to ensure optimal use of the bottomhole assembly. The high-pressure rotary jetting tool was used in the first run to condition the wellbore tubulars across the inflatable packer planned anchoring depth. In the second run, the inflatable packer was set at the target depth, and the stimulation treatment was selectively pumped either above or below the packer, depending on the depth of the interval of interest. The proposed stimulation technique was implemented in more than 40 wells, which included vertical and deviated water injectors, completed with 3 1/2-in. or 4 1/2-in. tubing and up to 7-in. casing, with two to five perforated intervals averaging 30 to 50 m in total, temperatures ranging from 90 to 140°F, and an average meadured depth of 2500 m. The CT-deployed inflatable packer had an expansion ratio of up to 3 to 1. CT real-time downhole measurements, such as CT internal pressure, CT annulus pressure, temperature, downhole axial forces, gamma ray, and casing collar locator (CCL), were instrumental to eliminate the uncertainties associated with changing downhole conditions and depth correlation. They also enabled a controlled actuation of the downhole tools in subhydrostatic wells, as the pressure imbalance caused by the low bottomhole pressure can generate loss of fluid flow and pressure across the tools. For the first time, the operator was able to stimulate the tight rock in water injector wells, enhancing injection sweeping efficiency and boosting oil production from offset wells. As a result of this campaign, production gains are estimated at 60,000 BOPD, and injectivity increased in average 2 times per intervention. This approach has now become the state of the practice for the operator to stimulate wells with high permeability contrast. This enhanced matrix stimulation technique, leveraged by CT and real-time downhole measurements, brings a new level of confidence to accurately and effectively deploy inflatable packers in wells with challenging expansion ratio and low reservoir pressure. In addition, the proposed technique enables stimulating tight rock across intervals with extreme heterogeneity, resulting in a more efficient sweep and an increase in oil production.
Efficient reservoir sweep is critical for operators to boost oil production in the Middle East. This task becomes particularly challenging in carbonate formations, which typically feature permeability ranging from microscopic pores to large cavernous vugs. Extreme heterogeneity disserves water injectors, leading to nonuniform injection profiles. Consequently, water sweeping is inefficient and leaves significant residual oil behind. In the Mesopotamian Basin, the matrix stimulation approach was rethought to address high permeability contrasts and produce the bypassed oil. The methodology relied on coiled tubing (CT) equipped with fiber optics and real-time downhole measurements, a CT-deployed inflatable packer, and a high-pressure rotary jetting tool. The array of downhole readings was leveraged to ensure optimal use of the bottomhole assembly. The high-pressure rotary jetting tool was used in the first run to condition the wellbore tubulars across the inflatable packer planned anchoring depth. In the second run, the inflatable packer was set at the target depth, and the stimulation treatment was selectively pumped either above or below the packer, depending on the depth of the interval of interest. The proposed stimulation technique was implemented in more than 40 wells, which included vertical and deviated water injectors, completed with 3 1/2-in. or 4 1/2-in. tubing and up to 7-in. casing, with two to five perforated intervals averaging 30 to 50 m in total, temperatures ranging from 90 to 140°F, and an average meadured depth of 2500 m. The CT-deployed inflatable packer had an expansion ratio of up to 3 to 1. CT real-time downhole measurements, such as CT internal pressure, CT annulus pressure, temperature, downhole axial forces, gamma ray, and casing collar locator (CCL), were instrumental to eliminate the uncertainties associated with changing downhole conditions and depth correlation. They also enabled a controlled actuation of the downhole tools in subhydrostatic wells, as the pressure imbalance caused by the low bottomhole pressure can generate loss of fluid flow and pressure across the tools. For the first time, the operator was able to stimulate the tight rock in water injector wells, enhancing injection sweeping efficiency and boosting oil production from offset wells. As a result of this campaign, production gains are estimated at 60,000 BOPD, and injectivity increased in average 2 times per intervention. This approach has now become the state of the practice for the operator to stimulate wells with high permeability contrast. This enhanced matrix stimulation technique, leveraged by CT and real-time downhole measurements, brings a new level of confidence to accurately and effectively deploy inflatable packers in wells with challenging expansion ratio and low reservoir pressure. In addition, the proposed technique enables stimulating tight rock across intervals with extreme heterogeneity, resulting in a more efficient sweep and an increase in oil production.
The article describes the choosing a water-and-gas shutoff technology in horizontal wells (HW) drilled in terrigenous reservoirs of the North Komsomolskoye field. The well completion system is characterized by the use of liners equipped with external liner packers and inflow control devices (ICD). To solve the problem, the world experience in the use the water-and-gas shutoff technologies in HW was studied. A matrix for choosing a technology with the use of technical means and combined effect was developed based on the type of isolated fluid, the type of reservoir and the method of well completion. The technology of installing a straddle system with cup packers and a blind inter-packer pipe in a horizontal wellbore was selected to increase the success of work on isolating the inflow of water and gas in difficult geological conditions of the North Komsomolskoye field. The technology was successfully tested: a producing well with almost 100% water cut was return to effective production. A similar straddle system, but with a perforated spacer pipe, was used for directional injection of sealants selected for the conditions of the North Komsomolskoye field into the water cut zone of the horizontal wellbore. The results of pilot field tests indicate that there is a prospect of using water-and-gas shutoff technologies to limit water and gas inflow at the North Komsomolskoye field.
With the continuous production from Kuwait oil reservoirs, a clear decline in reservoir pressure is observed. Subsequently, the demand for artificial lift is increasing to sustain production. Maintenance of those wells requires frequent interventions and continuous presence of workover rigs, which affects overall cost of production. Change of the electrical submersible pump (ESP) deployment method represents one of the cost reduction initiatives undertaken by the operator to reduce well intervention time and improve asset utilization. To minimize deferred production generated by the ESP replacement operation, a novel rigless approach leveraging coiled tubing (CT) was introduced in southeast and west Kuwait. It reduces operating costs and eliminates disruptions to operations by enabling rigless retrieval and redeployment of a standard ESP assembly. To evaluate the efficiency of using CT as rigless ESP retrieval and conveyance method, two candidate wells were selected to recover and redeploy a 108-ft-long ESP system. The intervention methodology relied on CT equipped with optical line and real-time downhole telemetry, a high-pressure rotary jetting tool, and a specific ESP deployment assembly. The retrieval and redeployment of the ESP was executed in a single rigless intervention, averaging less than 72 hours of operational time per well. This represents five times improvement over the standard practice using a workover rig. The intervention was executed in several stages, according to the well intervention program, and included tubing drift and cleanout runs, retrieval, inspection, and redress of the ESP assembly, followed by its successful redeployment. The high-pressure rotary jetting tool was used to condition the wellbore tubulars across the fishing area, while downhole real-time data enabled by the 1 3/4-in. CT equipped with optical telemetry were instrumental to eliminate uncertainties associated with changing downhole conditions. The casing collar locator allowed live depth control and ensured accurate positioning of the ESP. Its careful retrieval and redeployment were monitored thanks to the downhole axial force readings, which allowed controlling the weight applied on the fishing assembly. Internal and external downhole pressure data, along with downhole temperature, helped in controlling actuation and use of the high-pressure rotary jetting nozzle under nominal conditions for maximum efficiency. This enhanced rigless ESP replacement technique, made possible by the joint use of CT and real-time downhole measurements, was confirmed as a robust workover method for retrieval and redeployment of rigless ESPs in southeast and west Kuwait. The experience gained in the first two wells brings a new level of confidence to Kuwait operators about this technique, which certainly can be expanded to other fields in the Middle East and elsewhere.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.