Objective
There is a debate if the nitric oxide concentration ([NO]) required to influence vascular smooth muscle is below 50 nM or much higher. 30 μm and larger diameter electrodes report [NO] below 50 nM, whereas diameters of < 10–12 μm report hundreds of nM. This study examined how size of electrodes influenced [NO] measurement due to NO consumption and unstirred layer issues.
Methods
Electrodes were 2 mm disk, 30μm X 2 mm carbon fiber, and single 7μm diameter carbon fiber within open tip microelectrode, and exposed 7 μm carbon fiber of ~15 μm to 2 mm length.
Results
All electrodes demonstrated linear calibrations with sufficient stirring. As stirring slowed, 30 μm and 2 mm electrodes reported much lower [NO] due to unstirred layers and high NO consumption. The three 7 μm microelectrodes had minor stirring issues. With limited stirring with NO present, 7 μm open tip microelectrodes advanced toward 30 μm and 2 mm electrodes experienced dramatically decreased current within 10–50μm of the larger electrodes due to high NO consumption. None of the 7 μm microelectrodes interacted.
Conclusions
The data indicate large electrodes underestimate [NO] due to excessive NO consumption under conditions where unstirred layers are unavoidable and true microelectrodes are required for valid measurements.