The cardiac electrical impulse depends on an orchestrated interplay of transmembrane ionic currents in myocardial cells. Two critical ionic current mechanisms are the inwardly rectifying potassium current (I K1 ), which is important for maintenance of the cell resting membrane potential, and the sodium current (I Na ), which provides a rapid depolarizing current during the upstroke of the action potential. By controlling the resting membrane potential, I K1 modifies sodium channel availability and therefore, cell excitability, action potential duration, and velocity of impulse propagation. Additionally, I K1 -I Na interactions are key determinants of electrical rotor frequency responsible for abnormal, often lethal, cardiac reentrant activity. Here, we have used a multidisciplinary approach based on molecular and biochemical techniques, acute gene transfer or silencing, and electrophysiology to show that I K1 -I Na interactions involve a reciprocal modulation of expression of their respective channel proteins (Kir2.1 and Na V 1.5) within a macromolecular complex. Thus, an increase in functional expression of one channel reciprocally modulates the other to enhance cardiac excitability. The modulation is model-independent; it is demonstrable in myocytes isolated from mouse and rat hearts and with transgenic and adenoviral-mediated overexpression/silencing. We also show that the post synaptic density, discs large, and zonula occludens-1 (PDZ) domain protein SAP97 is a component of this macromolecular complex. We show that the interplay between Na v 1.5 and Kir2.1 has electrophysiological consequences on the myocardium and that SAP97 may affect the integrity of this complex or the nature of Na v 1.5-Kir2.1 interactions. The reciprocal modulation between Na v 1.5 and Kir2.1 and the respective ionic currents should be important in the ability of the heart to undergo self-sustaining cardiac rhythm disturbances.reentry | scaffolding proteins | conduction velocity | protein trafficking I n the heart, the inward rectifying potassium current (I K1 ) is the major current responsible for the maintenance of the resting membrane potential (RMP), whereas the sodium current (I Na ) provides the largest fraction of the inward depolarizing current that flows during an action potential (1). It is well-known that a relationship exists between these two ionic currents that is crucial for proper cardiac electrical function; disruption of this balance results in changes in sodium channel availability, cell excitability, action potential duration, and conduction velocity (2). Accordingly, I K1 -I Na interactions are important in stabilizing and controlling the frequency of the electrical rotors that are responsible for the most dangerous cardiac arrhythmias, including ventricular tachycardia and fibrillation (3).Post synaptic density, discs large, and zonula occludens-1 (PDZ) domain proteins link different and in many cases, multiple proteins to macromolecular complexes through interactions with their various domains. More than 70 PDZ d...