Aims/hypothesis Adipose tissue from obese and insulinresistant individuals showed altered expression of several iron-related genes in a recent study, suggesting that iron might have an important role in adipogenesis. To investigate this possible role, we aimed to characterise the effects of iron on adipocyte differentiation. Methods Intracellular iron deficiency was achieved using two independent approaches: deferoxamine administration (20 and 100 μmol/l) and transferrin knockdown (TF KD). The effects of added FeSO 4 , holo-transferrin and palmitate were studied during human and 3T3-L1 adipocyte differentiation. Finally, the relationship between iron-related and mitochondrialrelated genes was investigated in human adipose tissue. Results Most adipose tissue iron-related genes were predominantly expressed in adipocytes compared with stromal vascular cells. Of note, transferrin gene and protein expression increased significantly during adipocyte differentiation. Both deferoxamine and TF KD severely blunted adipocyte differentiation in parallel with increased inflammatory mRNAs. These effects were reversed in a dose-dependent manner after iron supplementation. Palmitate administration also led to a state of functional intracellular iron deficiency, with decreased Tf gene expression and iron uptake during adipocyte differentiation, which was reversed with transferrin co-treatment. On the other hand, iron in excess impaired differentiation, but this antiadipogenic effect was less pronounced than under iron chelation. Of interest, expression of several genes involved in mitochondrial biogenesis occurred in parallel with expression of iron-related genes both during adipogenesis and in human adipose tissue. Conclusions/interpretation Precise and fine-tuned iron availability is essential to achieve optimal adipocyte differentiation, possibly modulating adipocyte mitochondrial biogenesis.