We present Si nanotubes prepared by reductive decomposition of a silicon precursor in an alumina template and etching. These nanotubes show impressive results, which shows very high reversible charge capacity of 3247 mA h/g with Coulombic efficiency of 89%, and also demonstrate superior capacity retention even at 5C rate (=15 A/g). Furthermore, the capacity in a Li-ion full cell consisting of a cathode of LiCoO2 and anode of Si nanotubes demonstrates a 10 times higher capacity than commercially available graphite even after 200 cycles.
Perovskite solar cells (PSCs) exceeding a power conversion efficiency (PCE) of 20% have mainly been demonstrated by using mesoporous titanium dioxide (mp-TiO) as an electron-transporting layer. However, TiO can reduce the stability of PSCs under illumination (including ultraviolet light). Lanthanum (La)-doped BaSnO (LBSO) perovskite would be an ideal replacement given its electron mobility and electronic structure, but LBSO cannot be synthesized as well-dispersible fine particles or crystallized below 500°C. We report a superoxide colloidal solution route for preparing a LBSO electrode under very mild conditions (below 300°C). The PSCs fabricated with LBSO and methylammonium lead iodide (MAPbI) show a steady-state power conversion efficiency of 21.2%, versus 19.7% for a mp-TiO device. The LBSO-based PSCs could retain 93% of their initial performance after 1000 hours of full-Sun illumination.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.