The major event that triggers osteogenesis is the transition of mesenchymal stem cells into bone forming, differentiating osteoblast cells. Osteoblast differentiation is the primary component of bone formation, exemplified by the synthesis, deposition and mineralization of extracellular matrix. Although not well understood, osteoblast differentiation from mesenchymal stem cells is a well-orchestrated process. Recent advances in molecular and genetic studies using gene targeting in mouse enable a better understanding of the multiple factors and signaling networks that control the differentiation process at a molecular level. Osteoblast commitment and differentiation are controlled by complex activities involving signal transduction and transcriptional regulation of gene expression. We review Wnt signaling pathway and Runx2 regulation network, which are critical for osteoblast differentiation. Many other factors and signaling pathways have been implicated in regulation of osteoblast differentiation in a network manner, such as the factors Osterix, ATF4, and SATB2 and the TGF-beta, Hedgehog, FGF, ephrin, and sympathetic signaling pathways. This review summarizes the recent advances in the studies of signaling transduction pathways and transcriptional regulation of osteoblast cell lineage commitment and differentiation. The knowledge of osteoblast commitment and differentiation should be applied towards the development of new diagnostic and therapeutic alternatives for human bone diseases.
KeywordsOsteoblast; Runx2; Osterix; ATF4; SATB2; Wnt signaling; TGF-Beta signaling; hedgehog signaling; fgf signaling; ephrin signaling; sympathetic signaling; Review
INTRODUCTIONPhysiological bone turnover can be divided into 2 temporal phases: modeling, which occurs during development, and remodeling, a lifelong process involving tissue renewal. Remodeling starts with removal by osteoclasts of matrix, a mixture of insoluble proteins in which type I collagen is predominant (>90%) and a poorly crystalline, chemically modified hydroxyapatite. Following resorption, osteoblasts are recruited to the site, where they secrete and mineralize new matrix. The increased activity of osteoclasts caused by estrogen withdrawal causes bone loss and osteoporosis, a frequent low-bone mass disorder in
NIH-PA Author ManuscriptNIH-PA Author Manuscript NIH-PA Author Manuscript postmenopausal women leading to structural instability and a high fracture risk. Estrogen deficiency is known to play a critical role in the development of osteoporosis, while calcium and vitamin D deficiencies and secondary hyperparathyroidism also contribute (1). Osteoporosis is a factor in more than 1.5 million fractures each year in the United States alone. Costs have been estimated at more than $17 billion a year, particularly from hip fractures, more than 75% of them in women. A better understanding of bone quality, coming from biochemical markers and refined imaging techniques, will help predict who is most at risk of debilitating fractures. One of the main appro...