Abstract:The removal of dilute diethylether (DEE, concentration: 150 ppm) from an air stream (flow rate: 1.0 L min −1 ) using non-thermal plasma combined with different cordierite-supported catalysts, including Mn, Fe, and mixed Mn-Fe oxides, was investigated. The experimental results showed that the decomposition of DEE occurred in a one-stage reactor without the positive synergy of plasma and supported catalysts, by which ca. 96% of DEE was removed at a specific input energy (SIE) of ca. 600 J L −1 , except when the mixed Mn-Fe/cordierite was used. Among the catalysts that were examined, Mn-Fe/cordierite, the catalyst that was the most efficient at decomposing ozone was found to negatively affect the decomposition of DEE in the one-stage reactor. However, when it was utilized as a catalyst in the post-plasma stage of a two-part hybrid reactor, in which Mn/cordierite was directly exposed to the plasma, the reactor performance in terms of DEE decomposition efficiency was improved by more than 10% at low values of SIE compared to the efficiency that was achieved without Mn-Fe/cordierite. The ozone that was formed during the plasma stage and its subsequent catalytic dissociation during the post-plasma stage to produce atomic oxygen therefore played important roles in the removal of DEE.