Disposal of textile industrial effluents causes many environmental problems. The presence of chemical dyes in textile wastewater lead to the primary environmental pollution as well as the production of hazardous secondary compounds that are toxic and carcinogenic. In this study, Chitosan and Chitosan-zinc oxide (ZnO) nanocomposite were prepared and selected as a low-cost adsorbent with high adsorption capacity for removing reactive red 198 (RR 198) dye from contaminated. After preparation, it was characterized using Fourier-transform infrared spectroscopy [FT-IR], X-ray diffraction spectrophotometer [XRD], and scanning electron microscopy [SEM]. The effect of pH, temperature, time, adsorbent amount, and initial dye concentration were investigated in the removal efficiency of reactive red 198 (RR 198) dyes. The results showed that the maximum adsorption capacity (qm) obtained from the Langmuir equation was 172.41 mg/g in adsorbent dose of 0.1 g/L, pH: 4, temperature of 25 °C, adsorption time of 40 min. The thermodynamic parameters demonstrated the spontaneous and endothermic nature of the adsorption process. Due to the high efficiency of chitosan/ZnO nanocomposite in removal of RR 198 from water and advantages such as high adsorption capacity, simple synthesis, and easy application, it can be used as an effective method in removal of RR 198 from water.