This study surveys the possibility to optimally produce active chlorine from synthetic saline solutions using electrolysis by Response Surface Methodology (RSM). Various operating parameters, such as sodium chloride concentration, electrical potential and electrolysis time were evaluated. Central composite design (CCD) was applied to determine the optimal experimental factors for chlorine production. The experimental design, statistical analysis of the data and optimization were performed using R 3.5.3 software. The results showed that the optimum value of electrical efficiency (42 mg Cl 2 /kj) was obtained at the electrical voltage of 15.73 V during 15.63 min in the presence of 63.42 g/l of sodium chloride. The optimum point for current efficiency was 38.40%, which was obtained at the electrical voltage of 10.76 V during 6.70 min in the presence of 34.65 g/l of sodium chloride. Moreover, generated active chlorine was optimized based on energy consumption, which was 77 mg/l for the energy consumption of 0.2 kWh/l at a current density of 2000 mA/cm 2 . The electrochemical production of the chlorine gas from saline or brine water can be extensively used for water disinfection.