Sugar beet pulp is an abundant, renewable and low-cost precursor for production of activated carbon. In the present study, sugar beet pulp based activated carbon was prepared by using phosphoric acid as activating agent for adsorption of methylene blue. The conditions of preparation process had a significant influence on the adsorption of methylene blue, and the optimal preparation conditions were obtained as follows: liquid-to-solid ratio of 5, temperature of 450°C and phosphoric acid concentration of 3 mol/L. The properties of sugar beet pulp based activated carbon were characterized by nitrogen adsorption isotherm. The adsorption increases as the increase of contact time, adsorption temperature and pH, and initial concentration of methylene blue. Batch kinetic studies showed that an equilibrium time of 100 min was needed for the adsorption, and the adsorbance of methylene blue is 244.76 mg/g at equilibration. Kinetic models, Weber's pore diffusion model and Boyd's equation were applied to the experimental data to study the mechanism of adsorption and the controlled step. The results showed that the adsorption kinetics followed the pseudosecond-order type kinetic model, intraparticle diffusion was not the rate-limiting mechanism and adsorption process was controlled by film diffusion.