The selectivity for sulfur removal from oils is an important topic. In this work, the selectivity for different sulfur removal methods has been studied by conceptual density functional theory (CDFT) at the B3LYP/6-31111G(3df,2p) level of theory. In principle, the selectivity is directly related to the mechanisms of sulfur removal. It cannot be precisely elucidated until the mechanisms are totally known. However, current work shows that relationships can be constructed between CDFT and the selectivity. That is, for hydrodesulfurization, good descriptors will be ionization energy, hardness, and bond lengths of SAC; for adsorptive desulfurization, the hardness is a good descriptor; for oxidative desulfurization, good descriptors are electron density and Fukui function. And for extractive desulfurization (nonmetal-based ionic liquids), electron affinity and electrophilicity may be good descriptors. In addition, structures and frontier orbitals of various sulfides have also been discussed. It is hoped that these relationships between CDFT and selectivity can give useful information to develop highly efficient sulfur removal methods for specific sulfides, like 4,6-dimethyldibenzothiophene, and 4-methyldibenzothiophene.