Orientation contrast microscopy (i.e., electron backscattered diffraction, EBSD) was employed to monitor the plastic strain in loaded tensile samples of aluminium alloy Al6061 in T4 condition. The kernel average misorientation (KAM) is known to be an appropriate parameter in orientation contrast microscopy which has the potential to characterise the plastic strain by monitoring the local misorientations. This technique was applied here to gauge the extent of the plastic zone around a fatigue crack. To establish the magnitude of strain (which can be identified by the KAM parameter), a series of tensile samples were strained in the range of 1% to 25%. KAM maps were compared, and the average misorientations were related to the tensile strain values. The KAM distribution functions for all the strained samples were derived from a large scanned area. In addition, Vickers microhardness tests were conducted for these series of samples. This allowed the comparison of the mesoscopic plastic strain measured by Vickers microhardness with the micro plastic strain locally obtained by KAM. Noise was observed in the average KAM values up to a plastic strain of 1.5%. For the plastic strain exceeding 1.5%, noise no longer dominates the KAM map, and a positive-though not linear-correspondence between plastic strain and KAM was observed. The observed plastic zone at the tip of the fatigue crack by micro-Vickers hardness measurements was about an order of magnitude higher than the plastic zone observed on the KAM maps. In view of the calibration of KAM values on the tensile samples, it could be concluded that in the larger area of the plastic zone, the strain did not exceed the critical value of 1.5%.