The paper discusses the relationship between the modes traveling along the axis of the waveguide and the standing modes of a cylindrical resonator, and shows how this relationship can be explored using the Sage computer algebra system. In this paper, we study this connection and, on its basis, describe a new method for constructing the dispersion curve of a waveguide with an optically inhomogeneous filling. The aim of our work was to find out what computer algebra systems can give when calculating the points of the waveguide dispersion curve. Our method for constructing the dispersion curve of a waveguide with optically inhomogeneous filling differs from those proposed earlier in that it reduces this problem to calculating the eigenvalues of a self-adjoint matrix, i.e., a well-studied problem. The use of a selfadjoint matrix eliminates the occurrence of artifacts associated with the appearance of a small imaginary addition to the eigenvalues. We have composed a program in the Sage computer algebra system that implements this method for a rectangular waveguide with rectangular inserts and tested it on SLE modes. The obtained results showed that the program successfully copes with the calculation of the points of the dispersion curve corresponding to the hybrid modes of the waveguide, and the points found fit the analytical curve with graphical accuracy even when with a small number of basis elements taken into account.