Abstract. Maxwell equations describe the propagation with diffraction of waveguide modes through a thin-film waveguide lens. If the radius of the thin-film lens is large, then the thickness of the lens varies slowly in the yz plane. For this case we propose the model, which is based on the assumption of a small change in the electromagnetic field in a direction y. Under this assumption the vector diffraction problem is reduced to a number of scalar diffraction problems. The solutions demonstrate the vector nature of the electromagnetic field, which allows us to call the proposed model a quasi-vector model.
The article considers the midpoint scheme as a finite-difference scheme for a dynamical system of the form ̇ = (). This scheme is remarkable because according to Cooper’s theorem, it preserves all quadratic integrals of motion, moreover, it is the simplest scheme among symplectic Runge-Kutta schemes possessing this property. The properties of approximate solutions were studied in the framework of numerical experiments with linear and nonlinear oscillators, as well as with a system of several coupled oscillators. It is shown that in addition to the conservation of all integrals of motion, approximate solutions inherit the periodicity of motion. At the same time, attention is paid to the discussion of introducing the concept of periodicity of an approximate solution found by the difference scheme. In the case of a nonlinear oscillator, each step requires solving a system of nonlinear algebraic equations. The issues of organizing computations using such schemes are discussed. Comparison with other schemes, including those symmetric with respect to permutation of and .̂
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.