The paper presents an original contribution to the prediction of surface topography produced by precision hard turning operations using CBN cutting tools and the variable feed rate of 0.025-0.075 mm/rev. The differences between theoretical and real surface roughness parameters Rz and Sz are quantified in terms of springback effect, additional smoothing of irregularities and side flow effect. The primary experimental study includes measurements of 2D and 3D surface roughness parameters using contact profilometer. Correspondingly, cutting forces were measured using a piezoelectric dynamometer, and based on this data, specific corresponding values of ploughing energy and friction coefficient were determined. It was found that the measured value of maximum height of the surface Sz differs from the theoretical value mainly due to elastic recovery of the machined surface and the smoothing effect at the lower feeds and the elastic recovery and the side flow effect at the higher feeds employed. An empirical model for the prediction of the Sz value in function of the feed rate is derived. The prediction accuracy can be improved by advanced numerical modelling of surface generation mechanisms and associated distortions.