2017
DOI: 10.1007/s00170-017-1129-9
|View full text |Cite
|
Sign up to set email alerts
|

Prediction of surface topography in precision hard machining based on modelling of the generation mechanisms resulting from a variable feed rate

Abstract: The paper presents an original contribution to the prediction of surface topography produced by precision hard turning operations using CBN cutting tools and the variable feed rate of 0.025-0.075 mm/rev. The differences between theoretical and real surface roughness parameters Rz and Sz are quantified in terms of springback effect, additional smoothing of irregularities and side flow effect. The primary experimental study includes measurements of 2D and 3D surface roughness parameters using contact profilomete… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
2
1
1
1

Citation Types

0
4
0
3

Year Published

2018
2018
2024
2024

Publication Types

Select...
7
1

Relationship

0
8

Authors

Journals

citations
Cited by 14 publications
(7 citation statements)
references
References 16 publications
0
4
0
3
Order By: Relevance
“…Assim, como no trabalho de Grzesik (2018) FIGURA 8 Aço torneado com raio de ponta da ferramenta de 0,4 mm Notam-se que as marcas de avanço na superfície da peça, provenientes da ferramenta de corte, exibem padrões unidirecionais cuja orientação se apresenta perpendicular ao plano de vista, fato esse característico do processo de torneamento (NITHYANANDAM et al, 2015), que também foi observado no trabalho de Das et al (2016). Como a MEV não permite visualizar a profundidade da superfície.…”
Section: Resultsunclassified
See 2 more Smart Citations
“…Assim, como no trabalho de Grzesik (2018) FIGURA 8 Aço torneado com raio de ponta da ferramenta de 0,4 mm Notam-se que as marcas de avanço na superfície da peça, provenientes da ferramenta de corte, exibem padrões unidirecionais cuja orientação se apresenta perpendicular ao plano de vista, fato esse característico do processo de torneamento (NITHYANANDAM et al, 2015), que também foi observado no trabalho de Das et al (2016). Como a MEV não permite visualizar a profundidade da superfície.…”
Section: Resultsunclassified
“…Em função disso, vários são os estudos desenvolvidos (BHARDWAJ et al, 2014;ASILTÜRK et al, 2016;GRZESIK, 2018) que visam avaliar a influência desses, e dos demais parâmetros de usinagem envolvidos no processo de torneamento. Grzesik (2018) procurou prever a rugosidade superficial (por meio do parâmetro Rz) produzida por operações de torneamento de precisão utilizando ferramentas de corte de CBN e taxas de avanços variáveis de 0,025 a 0,075 mm/rev. As diferenças entre os parâmetros de rugosidade superficial e teórica foram quantificadas em termos de efeito de mola, suavização adicional de irregularidades e efeito de fluxo lateral.…”
Section: Introductionunclassified
See 1 more Smart Citation
“…Hessainia et al [41] optimized the technological parameters (cutting speed, feed rate, depth of cut) in hard turning using the RSM method to reduce vibrations and improve surface roughness. Grzesik [42] presented a combined method for estimating Rz and Sz surface roughness parameters in precision hard turning with a CBN tool, where the empirical model generated from the experimental data was improved by advanced numerical modeling. Tuan et al [43] investigated the effect of MoS 2 nanoparticle concentration and technological parameter cutting speed, feed-on surface roughness and surface microstructure during the hard turning of 90CrSi steel with minimal lubrication.…”
Section: State Of the Art Of Surface Roughness And Wear Modeling In H...mentioning
confidence: 99%
“…ANOVA results showed that workpiece hardness, cutting length, and some interaction terms were less significant effect on surface roughness. Grzesik [57] used a piezoelectric dynamometer to measure cutting forces to determine the plowing energy and friction coefficient and reveal the spring-back effect of surface roughness. The audible sound emitted during hard turning was found by Frigieri et al [58] to be a valuable source of information for surface roughness diagnosis.…”
Section: Sensor Signalsmentioning
confidence: 99%