Mass via arrays (MVAs) are intersubstrate thermal management structures that utilize thermal meta-material design principles to target localized hot spots and extreme variation in the temperature profile of electronic systems. MVAs have shown promise for integration into electronic systems as passive thermal management techniques. Theoretical analysis has shown that, when properly designed, MVAs and MVA-like structures provide control over how the heat is transferred in an electronic substrate. While the theoretical confirmation of this behavior is promising, experimental results are important to prove and strengthen MVA design principles. In this work, MVAs are implemented using an industry-standard printed circuit board (PCB) fabrication technique with Rogers 4350B (RO4350) material. The design structures are first theoretically modeled using a multilayer RO4350 stack-up in which equivalent thermal properties are studied for a variety of MVA designs. Uncertainty metrics are integrated into this model, and an iterative, Monte Carlo process is used to simulate variability in MVA performance. Next, these theoretical structures are implemented in conventional PCBs. Sample devices are chosen at random, and the heat spreading characteristics of the devices are measured using a thermal imaging camera. The results of these measurements confirm the theoretical baseline that an MVA structure provides improved thermal management characteristics relative to conventional thermal via array (TVA) structures.