Due to the proliferation of data being exchanged and the increase of dependency on this data for critical decision-making, it has become imperative to ensure the trustworthiness of the data at the receiving end in order to obtain reliable results. Data provenance, the derivation history of data, is a useful tool for evaluating the trustworthiness of data. Various frameworks have been proposed to evaluate the trustworthiness of data based on data provenance. In this paper, we briefly review a history of these frameworks for evaluating the trustworthiness of data and present an overview of some prominent state-of-the-art evaluation frameworks. Moreover, we provide a comparative analysis of two key frameworks by evaluating various aspects in an executional environment. Our analysis points to various open research issues and provides an understanding of the functionalities of the frameworks that are used to evaluate the trustworthiness of data.