The lives of many thousands of children born premature or ill at term around the world have been saved by those who work within neonatal intensive care units (NICUs). Modern-day neonatologists, together with nursing staff and other specialists within this domain, enjoy modern technologies for activities such as financial transactions, online purchasing, music, and video on demand. Yet, when they move into their workspace, in many cases, they are supported by nearly the same technology they used 20 years ago. Medical devices provide visual displays of vital signs through physiological streams such as electrocardiogram (ECG), heart rate, blood oxygen saturation (SpO(2)), and respiratory rate. Electronic health record initiatives around the world provide an environment for the electronic management of medical records, but they fail to support the high-frequency interpretation of streaming physiological data. We have taken a collaborative research approach to address this need to provide a flexible platform for the real-time online analysis of patients' data streams to detect medically significant conditions that precede the onset of medical complications. The platform supports automated or clinician-driven knowledge discovery to discover new relationships between physiological data stream events and latent medical conditions as well as to refine existing analytics. Patients benefit from the system because earlier detection of signs of the medical conditions may lead to earlier intervention that may potentially lead to improved patient outcomes and reduced length of stays. The clinician benefits from a decision support tool that provides insight into multiple streams of data that are too voluminous to assess with traditional methods. The remainder of this article summarizes the strengths of our research collaboration and the resulting environment known as Artemis, which is currently being piloted within the NICU of The Hospital for Sick Children (SickKids) in Toronto, Ontario, Canada. Although the discussion in this article focuses on a NICU, the technologies can be applied to any intensive care environment.
Caring for patients with chronic illnesses is costly-nearly $1.27 trillion today and predicted to grow much larger. To address this trend, we have designed and built a platform, called Personal Care Connect (PCC), to facilitate the remote monitoring of patients. By providing caregivers with timely access to a patient's health status, they can provide patients with appropriate preventive interventions, helping to avoid hospitalization and to improve the patient's quality of care and quality of life. PCC may reduce health-care costs by focusing on preventive measures and monitoring instead of emergency care and hospital admissions. Although PCC may have features in common with other remote monitoring systems, it differs from them in that it is a standards-based, open platform designed to integrate with devices from device vendors and applications from independent software vendors. One of the motivations for PCC is to create and propagate a working environment of medical devices and applications that results in innovative solutions. In this paper, we describe the PCC remote monitoring system, including our pilot tests of the system.
Abstract. While data provenance is a well-studied topic in both database and workflow systems, its support within stream processing systems presents a new set of challenges. Part of the challenge is the high stream event rate and the low processing latency requirements imposed by many streaming applications. For example, emerging streaming applications in healthcare or finance call for data provenance, as illustrated in the Century stream processing infrastructure that we are building for supporting online healthcare analytics. At anytime, given an output data element (e.g., a medical alert) generated by Century, the system must be able to retrieve the input and intermediate data elements that led to its generation. In this paper, we describe the requirements behind our initial implementation of Century's provenance subsystem. We then analyze its strengths and limitations and propose a new provenance architecture to address some of these limitations. The paper also includes a discussion on the open challenges in this area.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.