Coupling reactions stand amid the most significant reactions in synthetic organic chemistry. Of late, these coupling strategies are being viewed as a versatile synthetic tool for a wide range of organic transformations in many sectors of chemistry, ranging from indispensable synthetic scaffolds and natural products of biological significance to novel organic materials. Further, the usage of dual-catalysis in accomplishing various interesting cross-coupling transformations is an emerging field in synthetic organic chemistry, owing to their high catalytic performance rather than the usage of a single catalyst. In recent years, synthetic organic chemists have given considerable attention to hetero-dual catalysis, wherein these catalytic systems have been employed for the construction of versatile carbon-carbon [C(sp3)–C(sp3), C(sp3)–C(sp2), C(sp2)–C(sp2), etc.] and carbon-heteroatom (C-N, C-O, C-P, C-S, etc.) bonds. Therefore, in this mini-review, we are emphasizing recently developed various cross-coupling reactions catalysed by transition-metal dual-catalysis (i.e., using palladium and copper catalysts, and by omitting the reports on photoredox/metal catalysis).