Surface water is the recipient of pollutants from various sources, including improperly treated wastewater. Comprehensive knowledge of the composition of water is necessary to make it reusable in water-scarce environments. In this work, proton nuclear magnetic resonance (1H-NMR) was combined with multivariate analysis to study the metabolites in four rivers and four wastewater treatment plants releasing treated effluents into the rivers. 1H-NMR chemical shifts of the extracts in CDCl were acquired with Bruker 400. Chemical shifts of 1H-NMR in chlorinated alkanes, amino compounds and fluorinated hydrocarbons were common to samples of wastewater and lower reaches or the rivers. 1H-NMR chemical shifts of carbonyl compounds and alkyl phosphates were restricted to wastewater samples. Chemical shifts of phenolic compounds were associated with treated effluent samples. This study showed that the sources of these metabolites in the rivers were not only from improperly treated effluents but also from runoffs. Multivariate analyses showed that some of the freshwater samples were not of better quality than wastewater and treated effluents. Observations show the need for constant monitoring of rivers and effluent for the safety of the aquatic environment.