Research efforts were given towards development of low carbon high strength steels since recent past. The present study deals with the development of a low carbon high strength steel alloyed with Mn, Ni, Mo, Cu and microalloyed with Ti and Nb. The steel was subjected to three stage controlled rolling operation followed by accelerated cooling. The structure and properties of the steel at various processing conditions were evaluated. Microstructural observation reveals predominantly lath martensite along with twinned martensite structure at all processing conditions. High strength values at higher finish rolling temperatures have been obtained due to fine martensitic structure along with tiny precipitates of microalloying carbide and carbonitride. The strength value increases marginally at lower finishing temperature due to comparatively finer lath size of martensite and increased precipitation density of carbides, carbonitrides along with Cu particles. The variation in impact toughness properties at different finish rolling temperatures is found to be negligible at ambient and subambient temperatures. The formation of stable and large TiNmCN particles during casting have impaired the impact toughness values at ambient and at -40°C temperatures.Keywords: high strength steel, thermo-mechanical processing, twinned martensite, microalloying precipitate, toughness steel research into 77 (2006) No. 4