The production of American Petroleum Institute (API) class steels using the traditional controlled rolling route rather than the process involving accelerated cooling necessitates a careful adjustment of steel composition associated with the optimization of the rolling schedule for the deformation and phase transformation characteristics of these modified alloys. The current work presents a study of two, NbCr and NbCrMo, steel systems. The microstructure obtained is correlated not only with the resulting mechanical properties, but also with the weldability and resistance to damage in the aggressive environments to which the materials are exposed. The evaluation of the steels was undertaken at two stages along the production route, sampling the material as plate and as tubular product, according to the API 5L 2000 standard. Tensile testing, Charpy-V impact testing, and hardness measurements were used to determine the mechanical properties, and microstructural characterization was performed by optical and scanning electron microscopy. The results showed that it was possible to obtain good impact properties, for both steels, in plate and tube formats. The Charpy-V impact energy, measured at Ϫ20 °C from 100 to 250 J corresponds to a toughness level above that required by the API 5L 2000 standard, which specifies 68 to 101 J at 0 °C. The yield strength (YS) to ultimate tensile strength (UTS) ratio was determined to be 0.8, the API standard establishing a maximum limit of 0.93. Both of the alloys investigated exhibited a bainitic microstructure and were successfully processed to fabricate tubular products by the "UOE" (bending in "U", closing in "O," and expanding "E") route. With regard to weldability, the two experimental steels exhibited a heat-affected zone (HAZ) for which toughness levels (using the temperature associated with a 100 J impact energy as a base for comparison) were higher than those for both the base metal (BM) and the weld metal (WM) itself. In order to perform the evaluation of the behavior of the steels in an aggressive environment, more specifically their resistance to the deleterious effects of H 2 S, slow strain rate tests (SSRTs) were carried out, immersing the samples in a sodium thiosulfate solution during the tests. Though no secondary cracking was observed in the test samples, the ductility levels measured were lower than those for the same materials tested in air. Constant load tests were also conducted according to the standard NACE conditions. Despite the more aggressive nature of the test solution in these cases, no samples of either steel suffered failure.