ResumoO presente trabalho faz parte de um programa de pesquisas que tem por objetivo a avaliação da viabilidade técnica do aumento de produtividade na fabricação de componentes tubulares utilizados no segmento offshore, soldados integralmente pelo processo a arco submerso automatizado com elevado aporte térmico, sem prejuízo da tenacidade ao impacto do metal de solda. Foram soldadas juntas multipasse, pelo processo a arco submerso com combinação de arame/fluxo do tipo F7A4-EM12K com arame de 3,2 mm de diâmetro, com preaquecimento de 80°C, corrente contínua, posição plana e aporte térmico variando de 3,5 kJ/mm até 12 kJ/mm. Após a soldagem, realizaram-se ensaios de tração, impacto Charpy-V às temperaturas de -60°C, -40°C, -20°C, 0°C e 20ºC e metalográficos pelas técnicas de microscopia óptica (MO) e de microscopia eletrônica de varredura (MEV) em corpos-de-prova retirados integralmente do metal depositado, objetivando a avaliação da relação tenacidade/microestrutura. Foi verificado que os metais de solda obtidos mostraram níveis de tenacidade superiores aos mínimos requeridos para a utilização na soldagem de aços C-Mn baixa liga com requisitos de tenacidade ao impacto de 27 J a 0ºC, para aportes térmicos até 12 kJ/mm. Desta forma é possível um aumento de produtividade de 58% nos tempos efetivos de fabricação. Palavras-chave: Metal de solda; Tenacidade; Processo arco submerso; Produtividade.
STUDY OF THE INFLUENCE OF THE HEAT INPUT ON MECHANICAL PROPERTIES OF C-Mn STEEL WELD METALS OBTAINED BY SUBMERGED ARC PROCESS AbstractThe present work is part of a research program that aims to evaluate the technical feasibility of increasing productivity in the manufacturing of tubular components for offshore oil industry, which are fully welded by automatic submerged arc welding process, with high heat input, but with no impairment on the impact toughness of the weld metal. Multipass welds were produced by the submerged arc welding process, with a combination of F7A4-EM12K (wire/flux), by using a 3.2 mm-diameter wire, preheating at 80°C, with direct current, in flat position, with heat input varying from 3.5 kJ/mm to 12 kJ/mm. After welding, tensile tests and Charpy-V impact tests at -60°C, -40°C, -20°C, 0°C and 20°C were carried out, as well as metallographic examination by both optical (OM) and scanning electron microscopy (SEM), of specimens obtained entirely from the weld metal, allowing the discussion over the toughness X microstructure relationship. The weld metals have shown higher toughness levels in relation to the minimum required for use with low-alloy C-Mn steels welding with requirements of impact toughness of 27 J at 0°C for heat input up to 12 kJ/mm allowing an increase in productivity of 58% on the effective manufacturing time.