Welding distortion is a critical issue as it leads to severe deterioration of structural integrity of welded work piece and dimensional precision. This study aims at studying the effects of shielded metal arc welding (SMAW) parameters on the evolution of mechanical properties, including tensile strength, impact toughness, and hardness, along with angular distortion on a welded joint from SA 516 grade 70. Such parameters are analyzed and optimized by employing the Taguchi method and Grey relational analysis. SA 516 grade 70 is commercially used for fabrication of storage tanks, boilers and pressure vessels. SMAW is investigated with three levels of root gap, groove angle, electrode diameter, and pre-heat temperature, which were varied on a butt joint in flat (1 G) position to determine their effects on response variables at room temperature. Nine experiments were designed using a Taguchi L9 orthogonal array, welded according to American Society of Mechanical Engineers (ASME) section IX, and samples were prepared and tested as per ASTM A 370. The Taguchi method and Grey relational analysis were employed to observe the most significant parameters and optimal levels that synergically yield improved responses. Results are validated by conducting confirmatory experiments that show good agreement with optimum results.
Minimum quantity lubricant (MQL) is an advanced technique in machining to achieve sustainability, productivity, higher precision, economic benefits, and a reduction in carbon footprints. The present research work aims to investigate the effect of the cutting process parameters of the end milling of AA5005H34 material under dry and MQL cutting environments. The key performance indicators of machining include the surface roughness profile, the material removal rate, and tool wear. Surface roughness parameters are measured with the help of the Mitutoyo surface roughness tester, and the cutting tool wear is measured according to the ISO 8688-2:1989 standard using a scanning electron microscope (SEM). Sixteen experiments are designed based on the Taguchi orthogonal array mixture design. Single responses are optimized based on signal to noise ratios, while for multi-response optimization composite desirability function coupled with principal component analysis is applied. Analysis of variance (ANOVA) results revealed that the feed rate followed by spindle speed, axial depth of the cut, width of the cut, and cutting environment are the most significant factors contributing to the surface roughness profile, material removal rate, and tool wear. The optimized parameters are obtained as cutting speed of 3000 rev/min, feed rate of 350 mm/min, axial depth of cut of 2 mm, and width of cut of 6 mm under an MQL environment.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.