New CCT equations have been developed and optimized to simulate the start temperatures of the austenite decomposition process in low-alloyed steels using experimental CCT data published in the literature. Exceptionally, this optimization does not apply the nominal compositions of the steels, but the corresponding soluble compositions of the grain boundaries calculated using IDS software, depending on the reported austenitization treatments of the steels. These compositions, rather than the nominal ones, are expected to control the start of the austenite decomposition, which usually initiates at the grain boundaries. The new optimization treatment takes into account the solute microsegregation and the possible precipitate formation. Using IDS software, the new equations were validated with new experimental CCT data. Agreement was good not only for the austenite decomposition start temperatures, but also for the final phase fractions, indicating fairly reasonable predictions of phase transformation kinetics by the IDS. In addition, IDS simulations were compared with the experimental CCT data of five high-carbon steels, applying both the new equations based on grain boundary soluble compositions as well as the equations based on the nominal compositions. With the same experimental CCT data used in optimization, better agreement was obtained with the new equations, indicating the importance of determining the soluble compositions at the grain boundaries where the austenite decomposition process is likely to begin.