In this paper, 1,538 papers retrieved with the keywords “sports artificial intelligence (AI)” on the Web of Science database since 2007 were taken as the data source, and the Cite Space V software was used to visualize and analyze them. A visual knowledge graph was used to streamline the countries, institutions and authors conducting sports AI research, discipline distribution, research hotspots and development trends in the past 15 years. Subsequently, its development direction and research progress were discussed. Sports AI was widely distributed, with the US, China and the UK leading the way. The most prolific authors and teams in research on sports AI were concentrated in American universities. Their main research direction is to develop and improve smart wearable devices based on machine learning and deep learning technologies for different groups of people. Research on sports AI involved multiple disciplines, which mainly applied and referred to research methodologies and theories on engineering, computer science and sports science. It could be seen from the frequency and centrality of keywords that in the current field of sports AI, machine learning is the main direction, artificial neural networks is the main algorithm, and practical and empirical research based on data mining is the focus. The research hotspots were divided into three major clusters: physical health promotion, sports injury prevention and control, and athletic performance enhancement. How to introduce intelligent technology into sports for a perfect integration still has an arduous and long way to go. Future development requires joint efforts and participation of scientific researchers, professionals and common people.