High performance catalysts are central for the development of new generation energy conversion and storage technologies. 1,2 While industrial catalysts can be optimized empirically by tuning the elemental composition, changing the supports, or altering preparation conditions in order to achieve higher activity and selectivity, these conventional catalysts are typically not uniform in composition and/or surface structure at the nano-to micro-scale. In order to significantly improve our capability of designing better catalysts, new concepts for the rational design and assembly of metal-metal oxide interfaces are desired. Metal nanocrystals with well-controlled shape and size are interesting materials for catalyst design from both electronic structure and surface structure aspects. 3,4,5 From the electronic structure point of view, small metal nanoclusters have size-dependent electronic states, which make them fundamentally different from the bulk. From the surface structure point of view, the shaped nanocrystals have surfaces with well-defined atomic arrangements. It has been clearly demonstrated by surface science studies in recent decades that the atomic arrangement on the crystal surface can affect catalytic phenomena in terms of activity, selectivity, and durability.