To study the initiation and expansion of the interlayer gap of the China Railway Track System Type II (CRTS-II) ballastless slab track structure under the action of repeated thermal loading as well as the influence of the interlayer gap on the displacement, strain and stiffness of the track structure, a 1/4 scale three-span ballastless slab track simply supported bridge structural system specimen was developed and 18 cycles of extremely thermal loading tests were carried out. Static loading tests were carried out before and after the repeated thermal loading test and the effects of the repeated temperature loading on the mechanical properties of the structural system were analyzed. The test results show that under repeated temperature loading, there is a gap between the track slab and cement emulsified asphalt (CA) mortar near the fixed end section of the beam (close to the shear slots). The interlayer gap gradually expands to the mid-span section in a “stepped” shape in three stages: initiation, expansion and stabilization. Under the same temperature load, the camber of the concrete box beam decreases gradually while that of the track structure increases gradually with the increase of the interlayer gap length. During the three stages of interlayer gap development, the track structure stiffness degrades gradually, and the fastest reduction rate during the expansion stage. At the end of the 18th cycle of thermal loading, a degradation of 14.96% and 2.52% is observed in the stiffness of the track structure and that of the ballastless track-bridge structural system, respectively.