Mammary epithelial cells (MECs) are the only cell type that produces milk during lactation. MECs also form less-permeable tight junctions (TJs) to prevent the leakage of milk and blood components through the paracellular pathway (blood-milk barrier). Multiple factors that include hormones, cytokines, nutrition, and temperature regulate milk production and TJ formation in MECs. Multiple intracellular signaling pathways that positively and negatively regulate milk production and TJ formation have been reported. However, their regulatory mechanisms have not been fully elucidated. In addition, unidentified components that regulate milk production in MECs likely exist in foods, for example plants. Culture models of functional MECs that recapitulate milk production and TJs are useful tools for their study. Such models enable the elimination of indirect effects via cells other than MECs and allows for more detailed experimental conditions. However, culture models of MECs with inappropriate functionality may result in unphysiological reactions that never occur in lactating mammary glands in vivo. Here, I briefly review the physiological functions of alveolar MECs during lactation in vivo and culture models of MECs that feature milk production and less-permeable TJs, together with a protocol for establishment of MEC culture with functional TJ barrier and milk production capability using cell culture inserts.