<p><strong>Abstract.</strong> Open biomass burning (OBB) has large potential in triggering local and regional severe haze with elevated fine particulate matter (PM<sub>2.5</sub>) concentrations and could thus deteriorate ambient air quality and threaten human health. Open crop straw burning (OCSB), as a critical part of OBB, emits abundant gaseous and particulate pollutants, especially in fields with intensive agriculture, such as central and eastern China (CEC). However, there are high uncertainties in current OCSB and other types of OBB emissions that could drive chemical transport models (CTMs) to fail to evaluate their respective impacts on haze formations accurately. Satellite retrievals provide an attractive alternative that can be used to simultaneously quantify emissions of OCSB and other types of OBB, such as the Fire INventory from NCAR version 1.5 (FINNv1.5), which yet generally underestimate their magnitudes due to unresolved small fires. In this study, we selected June in 2014 as our study period, which exhibited a complete evolution process of OBB (from June 1 to 19) over CEC. During this period, OBB was dominated by OCSB in terms of the number of fire hotspot and associated emissions (74&#8201;~&#8201;94&#8201;%), most of which were located at Henan and Anhui (>&#8201;60&#8201;%) with intensive enhancements from June 5 to 14 (>&#8201;80&#8201;%). It is found that OCSB presented a generally strong spatiotemporal correlation with regional haze over the central part of CEC (Henan, Anhui, Hubei, and Hunan), while other types of OBB emissions had certain influences on Jiangxi, Zhejiang, and Fujian. Based on these analyses, we established a constraining method that integrates ground PM<sub>2.5</sub> measurements with a state-of-art fully coupled regional meteorological and chemical transport model (the two-way coupled WRF-CMAQ) in order to derive optimal OBB emissions based on FINNv1.5. It is demonstrated that these emissions could allow the model to reproduce meteorological and chemical fields over CEC during the study period, whereas original FINNv1.5 underestimated OBB emissions by 2&#8201;~&#8201;7 times, depending on specific spatiotemporal scales. The results show that OBB had substantial impacts on surface PM<sub>2.5</sub> concentrations over CEC. Most of OBB contributions were dominated by OCSB, especially in Henan, Anhui, Hubei, and Hunan, while other types of OBB emissions also exerted certain influence in Jiangxi, Zhejiang, and Fujian. With the concentration-weighted trajectory (CWT) method, potential OCSB sources leading to severe haze in Henan, Anhui, Hubei, and Hunan were pinpointed. The results illustrated that the OCSB emissions in Henan and Anhui can cause haze not only locally but also regionally through regional transport. Combining with meteorological analyses, we can find that surface weather patterns played a cardinal role in reshaping spatial and temporal characteristics of PM<sub>2.5</sub> concentrations. Stationary high-pressure systems over CEC enhanced local PM<sub>2.5</sub> concentrations in Henan and Anhui. Then, with the evolution of meteorological patterns, Hubei and Hunan in the low-pressure system were forced to receive the pollution from areas (i.e., Henan and Anhui) enveloped in the high-pressure system. These results highlight that policymakers should strictly undertake interprovincial joint enforcement actions to prohibit irregular OBB, especially OCSB over CEC. By comparison, the constrained OBB emissions can, to a large extent, not only supplement insufficient estimations derived from satellite retrievals but also reduce overestimations of bottom-up methods.</p>