2021
DOI: 10.48550/arxiv.2111.10591
|View full text |Cite
Preprint
|
Sign up to set email alerts
|

AGA-GAN: Attribute Guided Attention Generative Adversarial Network with U-Net for Face Hallucination

Abstract: The performance of facial super-resolution methods relies on their ability to recover facial structures and salient features effectively. Even though the convolutional neural network and generative adversarial network-based methods deliver impressive performances on face hallucination tasks, the ability to use attributes associated with the low-resolution images to improve performance is unsatisfactory. In this paper, we propose an Attribute Guided Attention Generative Adversarial Network which employs novel a… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...

Citation Types

0
0
0

Publication Types

Select...

Relationship

0
0

Authors

Journals

citations
Cited by 0 publications
references
References 34 publications
0
0
0
Order By: Relevance

No citations

Set email alert for when this publication receives citations?