Systemic oxidative stress is thought to be an important factor in the pathogenesis of glaucoma. In particular, low systemic antioxidative capacity, which normally counters oxidative stress, may contribute to glaucoma. Thus, we investigated the association between biological antioxidant potential (BAP), a biomarker of systemic antioxidative capacity, and glaucoma severity in patients with open-angle glaucoma (OAG). This study included 480 eyes of 240 patients with OAG and 66 healthy control eyes. We measured the BAP serum level with a free radical analyzer and compared it with a weighted estimate of the number of retinal ganglion cells (wrgc), derived from circumpapillary retinal nerve fiber layer thickness and visual field mean deviation. We found that wrgc was uncorrelated with BAP in the overall, male, and female OAG patients, but was correlated in young (aged ≤ 65 years) male OAG patients (better eye: r = 0.33, P = 0.02; worse eye: r = 0.27, P = 0.047). Furthermore, a mixed-effects regression analysis revealed that BAP was an independent contributing factor to wrgc in young male OAG patients (P = 0.02). Thus, systemic antioxidant capacity was associated with glaucomatous damage in relatively young male patients, suggesting that anti-oxidant therapy might be more effective in these patients.