ABSTRACT-To investigate the involvement of protease-activated receptor-2 (PAR-2) in allergic dermatitis, we generated PAR-2-deficient (PAR-2) mice. Ear thickness, contact hypersensitivity (CH) induced by topical application of picryl chloride (PC) or oxazolone (Ox) after sensitization, and vascular permeability after ear passive cutaneous anaphylaxis (PCA) were compared between wild-type (WT) and PAR-2
A series of novel chromone derivatives, in which the chromone moiety is connected to a (diphenylmethylene)-, (diphenylmethyl)-, or (diphenylmethoxy)piperidine via an alkyloxy spacer, were synthesized as antiallergic and antiasthmatic agents. In addition to their potent antihistaminic activity, the compounds also inhibit contraction in guinea pig ileum induced by leukotriene D4. When analyzed by radioligand binding assays in guinea pig lung membranes, one of the compounds, 7-[[3-[4-(diphenylmethylene)piperidin-1- yl]propyl]oxy]-2-(5-tetrazolyl)-4-oxo-4H-1-benzopyran, showed dissociation constants (KD) of 5.62 nM and 2.34 microM for H1- and LTD4-receptors, respectively. In vivo at the dose of 10 mg/kg, the compound inhibited the histamine- and LTD4-induced increase of vascular permeability in guinea pigs by 95 and 30%, respectively. The inhibition of LTD4-induced increase in vascular permeability by the compound was increased to 56% when a dose of 50 mg/kg was employed. Similar to terfenadine, the compound does not readily occupy the brain H1-receptors when given intraperitoneally to mice, implying no sedating side effects.
The synthesis and CysLT1 antagonistic activities of a new series of 2-, 3-, and 4-(2-quinolinylmethoxy)- and 3- and 4-[2-(2-quinolinyl)ethenyl]-substituted, 2'-, 3'-, 4'-, or 5'-carboxylated chalcones are described. Structure-activity relationship studies indicate a preference for the presence of a negatively charged (acidic) moiety, although in some cases nitrile or ester analogues also exhibit moderate activity. The quinoline moiety may be substituted at either the 3- or the 4-position. Replacement of this heterocycle by other aromatic groups results in compounds with comparable affinities [2-(7-chloroquinoline), 1-(1-methyl-2-benzimidazole), or 1-(2-benzothiazole)] or substantially lower activities [1-(1-ethoxyethyl)-2-benzimidazole, 2-naphthyl, or phenyl]. The quinoline and chalcone moieties may be connected by either an ethenyl or a methoxy spacer. The acidic moiety at the chalcone B ring may be attached to the 2'-, 3'-, 4'-, or 5'-position, for both the 3- and 4-substituted chalcones. There are no general patterns to specify which substitution positions gave the most potent compounds. The series contains several potent CysLT1 receptor antagonists, with K(D) values approaching the nanomolar range, as measured by the displacement of [3H]LTD4 from guinea pig lung membranes. Antagonism of LTD4-induced contraction of guinea pig ileum, the inhibition of antigen-induced contraction of guinea pig trachea in vitro, and the inhibition of LTD4-induced increase of vascular permeability in vivo are determined for chalcones with high CysLT1 receptor affinities (K(D) values below 0.1 microM). 2'-Hydroxy-4-(2-quinolinylmethoxy)-5'-(5-tetrazolyl)chalcone (14, VUF 4819) showed good activity in both in vitro and in vivo assays and has been selected for further evaluation.
A novel series of 1-aryl-4,5,6,7-tetrahydro-1H-indazole-5-carboxylic acids and 2-aryl-4,5,6,7-tetrahydro-2H-indazole-5-carboxylic acids were synthesized via condensation between a phenylhydrazine and a 2-(hydroxymethylene)cyclohexanone-4-carboxylate, and the antiinflammatory activity was determined. In the carrageenan edema test, 1-aryl-4,5,6,7-tetrahydro-1H-indazole-5-carboxylic acids exhibited fairly high antiinflammatory activity. However, the 2-aryl isomers were far less active than the former. The most active compound of the series was 1-phenyl-4,5,6,7-tetrahydro-1H-indazole-5-carboxylic acid, which had an ED50 value of 3.5 mg/kg.
The synthesis and CysLT1 receptor affinities of a new series of highly rigid 3'- and 4'-(2-quinolinylmethoxy)- or 3'- and 4'-[2-(2-quinolinyl)ethenyl]-substituted, 6-, 7-, or 8-carboxylated flavones are described. CysLT1 receptor affinities of the flavones (down to 11 nM) were determined by their ability to displace [3H]LTD4 from its receptor in guinea pig lung membranes. Structure-affinity relationship studies showed that the relative positions of the carboxylic acid and the quinoline moiety were critical for CysLT1 affinities. While the carboxyl is optimal in the 8 position but tolerated in the 6 position, only the 6- and not the 8-tetrazole has significant activity. The quinoline moiety may be connected to the flavone skeleton by an ethenyl or a methoxy linker, but the substitution position is important for high affinity, especially in the 6-carboxylated flavones. 4'-Substituted 6-carboxyflavones are essentially inactive, whereas the 3'-substituted analogues have submicromolar CysLT1 affinity. Replacement of the quinoline by other heteroaromates generally leads to decreased affinities, with the phenyl and naphthyl analogues displaying only little or no affinity, while the 7-chloroquinoline analogue is comparable in activity to the quinoline. Flavones having CysLT1 receptor affinities of 10-30 nM were selected for determination of their inhibitory effects on the LTD4-induced contraction of guinea pig ileum in vitro. The IC50 values ranged between 15 and 100 nM. Compound 5d (8-carboxy-6-chloro-3'-(2-quinolinylmethoxy)flavone, VUF 5087) was selected for further research because of its high potency in the functional assay. This series contains the most rigid CysLT1 receptor antagonists known to date, and they are useful in the development of a CysLT1 antagonist model, which is discussed in the companion paper.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.