With the increased burden of low back pain (LBP) in our globally aging population there is a need to develop preclinical models of LBP that capture clinically relevant features of physiological aging, degeneration, and disability. Here we assess the validity of using a mouse model system for age-related LBP by characterizing aging mice for features of intervertebral disc (IVD) degeneration, molecular markers of peripheral sensitization, and behavioral signs of pain. Compared to three-month-old and one-year-old mice, two-year-old mice show features typical of IVD degeneration including loss of disc height, bulging, innervation and vascularization in the caudal lumbar IVDs. Aging is also associated with the loss of whole-body bone mineral density in both male and female mice, but not associated with percent lean mass or body fat. Additionally, two-year-old mice have an accumulation of TRPA1 channels and sodium channels Na v 1.8 and Na v 1.9 in the L4 and L5 lumbar dorsal root ganglia consistent with changes in nociceptive signaling. Lastly, the effect of age, sex, and weight on mobility, axial stretching and radiating pain measures was assessed in male and female mice ranging from two months to two years in a general linear model. The model revealed that regardless of sex or weight, increased age was a predictor of greater reluctance to perform axial stretching and sensitivity to cold, but not heat in mice.