The processing of pain undergoes several changes in aging that affect sensory nociceptive fibers and the endogenous neuronal inhibitory systems. So far, it is not completely clear whether age-induced modifications are associated with an increase or decrease in pain perception. In this study, we assessed the impact of age on inflammatory nociception in mice and the role of the hormonal inhibitory systems in this context. We investigated the nociceptive behavior of 12-month-old versus 6–8-week-old mice in two behavioral models of inflammatory nociception. Levels of TRP channels, and cortisol as well as cortisol targets, were measured by qPCR, ELISA, and Western blot in the differently aged mice. We observed an age-related reduction in nociceptive behavior during inflammation as well as a higher level of cortisol in the spinal cord of aged mice compared to young mice, while TRP channels were not reduced. Among potential cortisol targets, the NF-κB inhibitor protein alpha (IκBα) was increased, which might contribute to inhibition of NF-κB and a decreased expression and activity of the inducible nitric oxide synthase (iNOS). In conclusion, our results reveal a reduced nociceptive response in aged mice, which might be at least partially mediated by an augmented inflammation-induced increase in the hormonal inhibitory system involving cortisol.
BackgroundCaloric restriction is associated with broad therapeutic potential in various diseases and an increase in health and life span. In this study, we assessed the impact of caloric restriction on acute and inflammatory nociception in mice, which were either fed ad libitum or subjected to caloric restriction with 80% of the daily average for two weeks.ResultsThe behavioral tests revealed that inflammatory nociception in the formalin test and in zymosan-induced mechanical hypersensitivity were significantly decreased when mice underwent caloric restriction. As potential mediators of the diet-induced antinociception, we assessed genes typically induced by inflammatory stimuli, AMP-activated kinase, and the endocannabinoid system which have all already been associated with nociceptive responses. Zymosan-induced inflammatory markers such as COX-2, TNFα, IL-1β, and c-fos in the spinal cord were not altered by caloric restriction. In contrast, AMPKα2 knock-out mice showed significant differences in comparison to C57BL/6 mice and their respective wild type littermates by missing the antinociceptive effects after caloric restriction. Endocannabinoid levels of anandamide and 2-arachidonyl glyceroldetermined in serum by LC-MS/MS were not affected by either caloric restriction alone or in combination with zymosan treatment. However, cannabinoid receptor type 1 expression in the spinal cord, which was not altered by caloric restriction in control mice, was significantly increased after caloric restriction in zymosan-induced paw inflammation. Since increased cannabinoid receptor type 1 signaling might influence AMP-activated kinase activity, we analyzed effects of anandamide on AMP-activated kinase in cell culture and observed a significant activation of AMP-activated kinase. Thus, endocannabionoid-induced AMP-activated kinase activation might be involved in antinociceptive effects after caloric restriction.ConclusionOur data suggest that caloric restriction has an impact on inflammatory nociception which might involve AMP-activated kinase activation and an increased activity of the endogenous endocannabinoid system by caloric restriction-induced cannabinoid receptor type 1 upregulation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.