This study investigates the influence of the surface free energy (SFE) on the adhesion behaviour between wheat dough and bakery-relevant food processing surfaces. In doing so, the contact time and production-related changes of the adhesive and the adherend were taken into account. The adhesion measurements were conducted by means of previously developed methods (modified Chen/Hoseney, contact time measuring cell), whereby the force required for separating the dough from the surface after processing-relevant contact times was determined applying a texture analyzer. The SFE was determined by contact angle measurements. The SFE values for the examined materials are ranged between 5.5 ± 0.81 and 42.7 ± 0.88 mN/m. A strong linear correlation between the SFE of the bakery surfaces and their adhesion to dough could be determined after a certain contact time (≥ 1 min) (r = + 0.96 for surfaces with Sa > 20 μm; r = + 0.94 for surfaces with Sa < 20 μm). Bakery surfaces with energy values σsolid surface, total > 30 mN/m including a polar content indicated a strong interaction with wheat dough, which was confirmed by high adhesion values. Production-related changes to the processing surfaces showed a great impact on the adhesion behaviour: e.g. the abrasion of proofing cloths caused a higher amount of protruding fibres, which operate as a separating layer, resulting in a decrease of dough adhesion even after long contact times. The results in this study emphasize the importance of the SFE in the development of processing surfaces for the baking industry.