We study theoretically the transmission properties of serially connected mesoscopic rings threaded by a magnetic flux. Within a tight-binding formalism we derive exact analytical results for the transmission through periodic and quasiperiodic Fibonacci arrays of rings of two different sizes. The role played by the number of scatterers in each arm of the ring is analyzed in some detail. The behavior of the transmission coefficient at a particular value of the energy of the incident electron is studied as a function of the magnetic flux (and vice versa) for both the periodic and quasiperiodic arrays of rings having different number of atoms in the arms. We find interesting resonance properties at specific values of the flux, as well as a power-law decay in the transmission coefficient as the number of rings increases, when the magnetic field is switched off. For the quasiperiodic Fibonacci sequence we discuss various features of the transmission characteristics as functions of energy and flux, including one special case where, at a special value of the energy and in the absence of any magnetic field, the transmittivity changes periodically as a function of the system size.