The capacity of a cold atmospheric-pressure air plasma (CAAP) device for advanced first aid is presented. Using swine as an animal model, two trials: 1) a large, curved cut in hindquarters area and 2) amputation of a front leg, were performed. Cold atmospheric-pressure air plasma effluent, which carries reactive oxygen species (ROS) atomic oxygen (OI), is applied for wound treatments. Swift hemostasis of the wounds by the CAAP treatment was demonstrated. The pressure applied by a finger on the cut arteries in trial 1 and the tourniquet applied in trial 2 could be removed immediately after the treatment and there was no re-bleed in both cases. CAAP hemostasis mechanism was explored via in-vitro tests. The tests on sodium citrate mixed blood-droplet samples show that 1) the heat delivered by the CAAP has no impact on the observed clot formation, 2) plasma effluent activates platelets to promote coagulation state and cascade, and 3) the degree of clotting increases with the total amount of applied OI by means of the CAAP effluent. It took only 16 s of the CAAP treatment to reach full clotting, which was considerably shortened from the natural clotting time of about 25 minutes. The tests on smeared blood samples show that the reduction of the platelet count and the increase of RBC count are proportional to the amount of applied OI. A plausible CAAP hemostasis mechanism is concluded from the in vitro test results and the animal model trials.