Due to changed atmospheric concentrations of trace elements, their availability and cycling has changed, too. Numerous studies showed that trace metals as persistent, widely dispersed and interacting with different natural components, cause threat to human health and environment (Seinfeld & Pandis, 1998). Trace elements in urban areas (such as Cu, Zn, and Pb) are mainly emitted by traffic, including exhaust emissions and vehicle wear products (Harrison et al., 2003). Even though the use of leaded gasoline has been drastically reduced, our understanding of the effects of whole lead emission to air is far from sufficient (Van der Gon & Appelman, 2009). As reported recently, though atmospheric Pb had declined by a factor of 7 from 1980 to 2007, atmospheric deposition is still recognised as a major pathway of Pb to vegetation and topsoil (Hovmand et al., 2009). Since it offers a practical approach for monitoring deposition of atmospheric trace elements on the surface environment (Azimi et al., 2003; Tasić et al., 2008), collection of atmospheric deposition using bulk sampling devices has been extensively used. However, instrumental studies on atmospheric contamination are often limited by high cost and difficulties in carrying out extensive monitoring surveys in time and space, and do not offer reliable information about an impact of atmospheric pollutants on the living systems. Among the naturally occurring radionuclides in air, beryllium-7, radon and its short lived progenies are most significant, while caesium-137 is of major interest among the fission products. Long-lived radionuclides, potassium-40, uranium and thorium, found in 6 www.intechopen.com