Search citation statements
Paper Sections
Citation Types
Year Published
Publication Types
Relationship
Authors
Journals
In order to obtain good quality radar terrain images using an aerial-based synthetic aperture radar, a motion compensation procedure must be applied. This procedure can use a precise navigation system in order to determine the aircraft’s position and velocity. A major challenge is to design a motion compensation procedure that can operate in real time, which is crucial to ensure convenient data for a human analyst. The article discusses a possibility of Inertial Measurement System (INS)/Global Positioning System (GPS) navigation system usage in such a radar imaging system. A Kalman filter algorithm designed for this system is described herein, and its modifications introduced by the authors allow the use of navigational data not aligned in time and captured with different frequencies. The presented navigation system was tested using measured data. Radar images obtained with the INS/GPS-based motion compensation system were compared to the INS-only results and images obtained without navigation corrections. The evaluation results presented in the paper show that the INS/GPS system allows for better reduction of geometric distortions in images compared to the INS-based approach, which makes it more suitable for typical applications.
The paper presents methods of on-line and off-line estimation of UAV position on the basis of measurements from its integrated navigation system. The navigation system installed on board UAV contains an INS and a GNSS receiver. The UAV position, as well as its velocity and orientation are estimated with the use of smoothing algorithms. For off-line estimation, a fixed-interval smoothing algorithm has been applied. On-line estimation has been accomplished with the use of a fixed-lag smoothing algorithm. The paper includes chosen results of simulations demonstrating improvements of accuracy of UAV position estimation with the use of smoothing algorithms in comparison with the use of a Kalman filter.
No abstract
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
BlogTerms and ConditionsAPI TermsPrivacy PolicyContactCookie PreferencesDo Not Sell or Share My Personal Information
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.