A real narrowband noise signal representation in the form of an analytical signal in the Hilbert space is presented in the paper. This analytical signal is illustrated in a variable complex plane as a mark with defined amplitude, phase, pulsation and instantaneous frequency. A block diagram of a broadband product detector in a quadrature system is presented. Measurement results of an autocorrelation function of a noise signal are shown and the application of such solution in a noise radar for precise determination of distance changes as well as velocities of these changes are also presented. Conclusions and future plans for applications of the presented detection technique in broadband noise radars bring the paper to an end.
Determination of the signal power-to-noise power ratio on the input and output of reception systems is essential to the estimation of their quality and signal reception capability. This issue is especially important in the case when both signal and noise have the same characteristic as Gaussian white noise. This article considers the problem of how a signal-to-noise ratio is changed as a result of signal processing in the correlation receiver of a noise radar in order to determine the ability to detect weak features in the presence of strong clutter-type interference. These studies concern both theoretical analysis and practical measurements of a noise radar with a digital correlation receiver for 9.2 GHz bandwidth. Firstly, signals participating individually in the correlation process are defined and the terms signal and interference are ascribed to them. Further studies show that it is possible to distinguish a signal and a noise on the input and output of a correlation receiver, respectively, when all the considered noises are in the form of white noise. Considering the above, a measurement system is designed in which it is possible to represent the actual conditions of noise radar operation and power measurement of a useful noise signal and interference noise signals—in particular the power of an internal leakage signal between a transmitter and a receiver of the noise radar. The proposed measurement stands and the obtained results show that it is possible to optimize with the use of the equipment and not with the complex processing of a noise signal. The radar parameters depend on its prospective application, such as short- and medium-range radar, ground-penetrating radar, and through-the-wall detection radar.
This paper presents problems related to thermal radiation of human bodies in microwave range with respect to diagnosis of breast carcinoma. A mathematical model of thermal radiation transfer through tissues is introduced and methods of measurement of temperature, depth and size of a heat source, by means of multifrequency microwave thermograph are described. Theoretical considerations are supplemented by presentation of experimental results.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.