Abstract. The realization of the European Space Agency's Aeolus mission was supported by the long-standing development and field deployment of the Atmospheric LAser Doppler INstrument (ALADIN) Airborne Demonstrator (A2D) which, since the launch of the
Aeolus satellite in 2018, has been serving as a key instrument for the
validation of ALADIN, the first-ever Doppler wind lidar (DWL) in space. However, the validation capabilities of the A2D are compromised by deficiencies of the dual-channel receiver which, like its spaceborne counterpart, consists of a Rayleigh and a complementary Mie spectrometer for sensing the wind speed from both molecular and particulate backscatter signals, respectively. Whereas the accuracy and precision of the Rayleigh channel is limited by the spectrometer's high alignment sensitivity, especially in the near field of the instrument, large systematic Mie wind errors are caused by aberrations of the interferometer in combination with the temporal overlap of adjacent range gates during signal readout. The two error sources are mitigated by modifications of the A2D wind retrieval algorithm. A novel quality control scheme was implemented, which ensures that only backscatter return signals within a small angular range are further processed. Moreover, Mie wind results with large bias of opposing sign in adjacent range bins are vertically averaged. The resulting improvement of the A2D performance was evaluated in the context of two Aeolus airborne validation campaigns that were conducted between May and September 2019. Comparison of the A2D wind data against a high-accuracy, coherent DWL that was deployed in parallel on board the same aircraft shows that the retrieval refinements
considerably decrease the random errors of the A2D line-of-sight (LOS)
Rayleigh and Mie winds from about 2.0 to about 1.5 m s−1, demonstrating the capability of such a direct detection DWL. Furthermore, the measurement range of the Rayleigh channel could be largely extended by up to 2 km in the instrument's near field close to the aircraft. The Rayleigh and Mie systematic errors are below 0.5 m s−1 (LOS), hence allowing for an accurate assessment of the Aeolus wind errors during the September campaign. The latter revealed different biases of the Level 2B (L2B) Rayleigh-clear and Mie-cloudy horizontal LOS (HLOS) winds for ascending and descending orbits, as well as random errors of about 3 m s−1 (HLOS) for the Mie and close to 6 m s−1 (HLOS) for the Rayleigh winds, respectively. In addition to the Aeolus error evaluation, the present study discusses the applicability of the developed A2D algorithm modifications to the Aeolus processor, thereby offering prospects for improving the Aeolus wind data quality.