Aeolus is the world's first spaceborne Doppler Wind Lidar, providing profiles of horizontal line-of-sight (HLOS) wind retrievals. Numerical weather prediction (NWP) impact and error statistics of Aeolus Level-2B (L2B) wind statistics have been assessed using the European Centre for Medium-range Weather Forecasts (ECMWF) global data assimilation system. Random and systematic error estimates were derived from observation minus background departure statistics. The HLOS wind random error standard deviation is estimated to be in the range 4.0-7.0 m⋅s −1 for the Rayleigh-clear and 2.8-3.6 m⋅s −1 for the Mie-cloudy, depending on atmospheric signal levels which in turn depend on instrument performance, atmospheric backscatter properties and the processing algorithms.Complex systematic HLOS wind error variations on time-scales less than one orbit were identified, most strongly affecting the Rayleigh-clear winds. NWP departures and instrument housekeeping data confirmed that it is caused by temperature gradients across the primary mirror. A successful bias correction scheme was implemented in the operational processing chain in April 2020.In Observing System Experiments (OSEs), Aeolus provides statistically significant improvement in short-range forecasts as verified by observations sensitive to temperature, wind and humidity. Longer forecast range verification shows positive impact that is strongest at the day two to three forecast range: ∼2% improvement in root-mean-square error for vector wind and temperature in the tropical upper troposphere and lower stratosphere, and polar troposphere.Positive impact up to 9 days is found in the tropical lower stratosphere. Both Rayleigh-clear and Mie-cloudy winds provide positive impact, but the Rayleigh accounts for most tropical impact. The Forecast Sensitivity Observation Impact (FSOI) metric is available since 9 January 2020, when Aeolus was operationally assimilated, which confirms Aeolus is a useful contribution to the global observing system, with the Rayleigh-clear and Mie-cloudy winds providing similar overall short-range impact in 2020.
Abstract. Shortly after the successful launch of the European Space Agency's wind mission Aeolus, co-located airborne wind lidar observations were performed in central Europe; these observations employed a prototype of the satellite instrument – the ALADIN (Atmospheric LAser Doppler INstrument) Airborne Demonstrator (A2D). Like the direct-detection Doppler wind lidar on-board Aeolus, the A2D is composed of a frequency-stabilized ultra-violet (UV) laser, a Cassegrain telescope and a dual-channel receiver to measure line-of-sight (LOS) wind speeds by analysing both Mie and Rayleigh backscatter signals. In the framework of the first airborne validation campaign after the launch and still during the commissioning phase of the mission, four coordinated flights along the satellite swath were conducted in late autumn of 2018, yielding wind data in the troposphere with high coverage of the Rayleigh channel. Owing to the different measurement grids and LOS viewing directions of the satellite and the airborne instrument, intercomparison with the Aeolus wind product requires adequate averaging as well as conversion of the measured A2D LOS wind speeds to the satellite LOS (LOS*). The statistical comparison of the two instruments shows a positive bias (of 2.6 m s−1) of the Aeolus Rayleigh winds (measured along its LOS*) with respect to the A2D Rayleigh winds as well as a standard deviation of 3.6 m s−1. Considering the accuracy and precision of the A2D wind data, which were determined from comparison with a highly accurate coherent wind lidar as well as with the European Centre for Medium-Range Weather Forecasts (ECMWF) model winds, the systematic and random errors of the Aeolus LOS* Rayleigh winds are 1.7 and 2.5 m s−1 respectively. The paper also discusses the influence of different threshold parameters implemented in the comparison algorithm as well as an optimization of the A2D vertical sampling to be used in forthcoming validation campaigns.
Abstract. Soon after the launch of Aeolus on 22 August 2018, the first ever wind lidar in space developed by the European Space Agency (ESA) has been providing profiles of the component of the wind vector along the instrument's line of sight (LOS) on a global scale. In order to validate the quality of Aeolus wind observations, the German Aerospace Center (Deutsches Zentrum für Luft- und Raumfahrt e.V., DLR) recently performed two airborne campaigns over central Europe deploying two different Doppler wind lidars (DWLs) on board the DLR Falcon aircraft. The first campaign – WindVal III – was conducted from 5 November 2018 until 5 December 2018 and thus still within the commissioning phase of the Aeolus mission. The second campaign – AVATARE (Aeolus Validation Through Airborne Lidars in Europe) – was performed from 6 May 2019 until 6 June 2019. Both campaigns were flown out of the DLR site in Oberpfaffenhofen, Germany, during the evening hours for probing the ascending orbits. All together, 10 satellite underflights with 19 flight legs covering more than 7500 km of Aeolus swaths were performed and used to validate the early-stage wind data product of Aeolus by means of collocated airborne wind lidar observations for the first time. For both campaign data sets, the statistical comparison of Aeolus horizontal line-of-sight (HLOS) observations and the corresponding wind observations of the reference lidar (2 µm DWL) on board the Falcon aircraft shows enhanced systematic and random errors compared with the bias and precision requirements defined for Aeolus. In particular, the systematic errors are determined to be 2.1 m s−1 (Rayleigh) and 2.3 m s−1 (Mie) for WindVal III and −4.6 m s−1 (Rayleigh) and −0.2 m s−1 (Mie) for AVATARE. The corresponding random errors are determined to be 3.9 m s−1 (Rayleigh) and 2.0 m s−1 (Mie) for WindVal III and 4.3 m s−1 (Rayleigh) and 2.0 m s−1 (Mie) for AVATARE. The Aeolus observations used here were acquired in an altitude range up to 10 km and have mainly a vertical resolution of 1 km (Rayleigh) and 0.5 to 1.0 km (Mie) and a horizontal resolution of 90 km (Rayleigh) and down to 10 km (Mie). Potential reasons for those errors are analyzed and discussed.
Abstract. In preparation of the satellite mission Aeolus carried out by the European Space Agency, airborne wind lidar observations have been performed in the frame of the North Atlantic Waveguide and Downstream Impact Experiment (NAWDEX), employing the prototype of the satellite instrument, the ALADIN Airborne Demonstrator (A2D). The direct-detection Doppler wind lidar system is composed of a frequency-stabilized Nd:YAG laser operating at 355 nm, a Cassegrain telescope and a dual-channel receiver. The latter incorporates a Fizeau interferometer and two sequential Fabry-Pérot interferometers to measure line-of-sight (LOS) wind speeds by analysing both Mie and Rayleigh backscatter signals. The benefit of the complementary design is demonstrated by airborne observations of strong wind shear related to the jet stream over the North Atlantic on 27 September and 4 October 2016, yielding high data coverage in diverse atmospheric conditions. The paper also highlights the relevance of accurate ground detection for the Rayleigh and Mie response calibration and wind retrieval. Using a detection scheme developed for the NAWDEX campaign, the obtained ground return signals are exploited for the correction of systematic wind errors. Validation of the instrument performance and retrieval algorithms was conducted by comparison with DLR's coherent wind lidar which was operated in parallel, showing a systematic error of the A2D LOS winds of less than 0.5 m s −1 and random errors from 1.5 (Mie) to 2.7 m s −1 (Rayleigh).
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.