The Upper Barremian-Albian Levant Platform was studied in North Sinai and Israel (Galilee and Golan Heights) by bio-and lithostratigraphy, facies analyses, and sequence stratigraphy. Integrating shallow-marine benthic foraminifera (mainly orbitolines), ammonite, and stable isotope data resulted in a detailed stratigraphic chart. Transects across the shallow shelf in both regions are based on facies analysis and form the basis for depositional models. In both transects five platform stages (PS I-V) were identified, which differ significantly in their stratigraphic architecture, mainly controlled by local tectonics, climate and second-order sea-level changes. In North Sinai, a transition from a shallow-shelf that is structured by sub-basins through a homoclinal ramp into a flat toped platform is recognized, while the sections in North Israel show a transition from a homoclinal ramp into a fringing platform. Local normal faults influenced the depositional architecture of the Upper Barremian-Lower Aptian strata in North Sinai and were attributed to syn-rift extensional tectonics. Four second-order sequence boundaries were identified, bounding Mid-Cretaceous Levant depositional sequences. These well-dated second-order sequence boundaries are MCL-1 (Late Barremian), MCL-2 (earliest Late Aptian), MCL-3 (Lower Albian), and MCL-4 (Late Albian). The sea-level history of the Levant Platform reflects the Late Aptian-Albian global long-term transgression, while the second-order sea-level changes show good correlation with those described from the Arabian plate.