Aim To investigate whether the sensory-motor impairment attributable to diabetic peripheral neuropathy would affect control of the accelerator pedal during a driving simulator task.Methods A total of 32 active drivers, 11 with diabetic peripheral neuropathy (mean AE SD age 67AE5.0 years), 10 with diabetes but no neuropathy (diabetes group; mean AE SD age 62AE10 years), and 11 healthy individuals without diabetes (healthy group; mean AE SD age 60AE11 years), undertook a test on a dynamometer to assess ankle plantar flexor muscle strength and ankle joint proprioception function of the right leg, in addition to a driving simulator task. The following variables were measured: maximal ankle plantar flexor muscle strength; speed of strength generation (Nm/s); and ankle joint proprioception (ankle repositioning error, degrees). In the driving simulator task, driving speed (mph), accelerator pedal signal (degrees) and the duration of specific 'loss-of-control events' (s) were measured during two drives (Drive 1, Drive 2).Results Participants with diabetic peripheral neuropathy had a lower speed of strength generation (P<0.001), lower maximal ankle plantar flexor muscle strength (P<0.001) and impaired ankle proprioception (P=0.034) compared to healthy participants. The diabetic peripheral neuropathy group drove more slowly compared with the healthy group (Drive 1 P=0.048; Drive 2 P=0.042) and showed marked differences in the use of the accelerator pedal compared to both the diabetes group (P=0.010) and the healthy group (P=0.002). Participants with diabetic peripheral neuropathy had the longest duration of loss-of-control events, but after one drive, this was greatly reduced (P=0.023).Conclusions Muscle function, ankle proprioception and accelerator pedal control are all affected in people with diabetic peripheral neuropathy, adversely influencing driving performance, but potential for improvement with targeted practice remains possible.