Intrusion detection systems are the last line of defence in the network security domain. Improving the performance of intrusion detection systems always increase false positives. This is a serious problem in the field of intrusion detection. In order to overcome this issue to a great extend, we propose a multi level post processing of intrusion alerts eliminating false positives produced by various intrusion detection systems in the network. For this purpose, the alerts are normalized first. Then, a preliminary alert filtration phase prioritize the alerts and removes irrelevant alerts. The higher priority alerts are then aggregated to fewer numbers of hyper alerts. In the final phase, alert correlation is done and alert correlation graph is constructed for finding the causal relationship among the alerts which further eliminates false positives. Experiments were conducted on LLDOS 1.0 dataset for verifying the approach and measuring the accuracy. Keywords: Intrusion detection system, alert prioritization, alert aggregation, alert correlation, LLDOS 1.0 dataset, alert correlation graph.