2020
DOI: 10.1177/0278364920966642
|View full text |Cite
|
Sign up to set email alerts
|

ALFA: A dataset for UAV fault and anomaly detection

Abstract: We present a dataset of several fault types in control surfaces of a fixed-wing unmanned aerial vehicle (UAV) for use in fault detection and isolation (FDI) and anomaly detection (AD) research. Currently, the dataset includes processed data for 47 autonomous flights with 23 sudden full engine failure scenarios and 24 scenarios for 7 other types of sudden control surface (actuator) faults, with a total of 66 minutes of flight under normal conditions and 13 minutes of post-fault flight time. It additionally incl… Show more

Help me understand this report
View preprint versions

Search citation statements

Order By: Relevance

Paper Sections

Select...
2
1
1
1

Citation Types

0
18
0
1

Year Published

2020
2020
2023
2023

Publication Types

Select...
4
3
1

Relationship

1
7

Authors

Journals

citations
Cited by 65 publications
(19 citation statements)
references
References 10 publications
0
18
0
1
Order By: Relevance
“…With the 19 correct sequences, our method results in 86.36% accuracy, 88.23% precision and 88.23% recall (sensitivity) over 22 flight tests. The evaluation metrics used for our calculations are explained in more details in [27].…”
Section: Resultsmentioning
confidence: 99%
See 2 more Smart Citations
“…With the 19 correct sequences, our method results in 86.36% accuracy, 88.23% precision and 88.23% recall (sensitivity) over 22 flight tests. The evaluation metrics used for our calculations are explained in more details in [27].…”
Section: Resultsmentioning
confidence: 99%
“…The figures also show how the variance of the prediction error stabilizes after the model stabilization. While this work and [27] provide a dataset suitable for benchmarking different methods, to the best of our knowledge, there has been no benchmark dataset available prior to this work to enable direct comparison with the published results of similar works like Venkataraman et al [28] and Bauer et al [29]. The use of our dataset in the future will enable the comparison of methods to the state-of-the-art.…”
Section: Resultsmentioning
confidence: 99%
See 1 more Smart Citation
“…Throughout the study, we utilized the ALFA dataset to recognize faults when the UAV still flies, but included a fault on the system body. Note that [ 24 ] describes the detailed description of the ALFA dataset.…”
Section: Proposed Methodologymentioning
confidence: 99%
“…Asimismo, también es posible que se pueda complementar al algoritmo con nuevas variables que pudieran ser importantes, por ejemplo, la corriente demandada por los rotores o la temperatura en cada rotor. La metodología propuesta puede aplicarse a diferentes tipos de vehículos aéreos a través de plataformas experimentales o bases de datos como las propuestas en Keipour et al (2019). Finalmente, es importante destacar que el método propuesto puede considerarse como una herramienta perfecta para poder obtener un modelo experimental mucho más preciso, del sistema a emplear.…”
Section: Conclusionesunclassified